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Abstract 

Multiple regression analysis is widely used and well-accepted for calculating damages 
in price-fixing antitrust litigations. Multiple regression models are used to determine 
whether prices were elevated by the alleged anticompetitive conduct and, if so, to 
quantify plaintiffs’ damages. If the case is a class action, class certification may depend 
on whether classwide methods exist to estimate damages and whether the challenged 
behavior impacted all or nearly all class members. Two standard types of models are 
often used to estimate the aggregate, classwide damages: forecasting and dummy 
variable models.2 We show that both model types can also be used to assess the 
extent of classwide impact by applying the fundamental premise of comparing actual 
and estimated “but-for” competitive prices. 

1.0 Introduction 

Econometric analyses are commonly employed in antitrust class actions. At the 
class certification stage plaintiffs typically need to establish that (1) classwide methods 
exist to estimate damages, and (2) the challenged behavior impacted all or nearly all 
proposed class members.3 Since Hydrogen Peroxide the bar has been raised from 
showing that such methods are likely to exist to showing such methods actually exist.4 
In our experience the requirement now means conducting specific analyses that provide 
at least preliminary estimates of aggregate classwide damages. This analysis typically 
addresses the question of whether the alleged conspiracy had the effect of increasing 
prices to a level above that which would have prevailed absent the conspiracy. If the 
analysis demonstrates elevated prices, the extent of the elevated prices’ impact across 
the proposed class may still be an open issue. 
 

 
1 The authors would like to thank Allison Zhou, Brooke Harmer, Devon Myers, Jodie Newman, and Wei 
Zhou for their contributions to this paper. 
2 Rubinfeld, D.L. (2011). “Reference Guide on Multiple Regression,” Reference Manual on 
Scientific Evidence, Third Edition, pp. 303-357; McCrary, J. and Rubinfeld, D. (2014). “Measuring 
Benchmark Damages in Antitrust Litigation,” Journal of Econometric Methods, 3(1): pp. 63-74. 
3 Federal Rules of Civil Procedure, Rule 23(b)(3). For purposes of this article we assume that plaintiffs 
are alleging a price-fixing conspiracy that violates Section 1 of the Sherman Act. 
4 In Re Hydrogen Peroxide Antitrust Litigation, 552 F.3d 305 (3rd Cir. 2008) (“The evidence and 
arguments a district court considers in the class certification decision call for rigorous analysis. A 
party’s assurance to the court that it intends or plans to meet the requirements is insufficient”; “proper 
analysis under Rule 23 requires rigorous consideration of all the evidence and arguments offered by the 
parties. It is incorrect to state that a plaintiff need only demonstrate an “intention” to try the case in a 
manner that satisfies the predominance requirement”). 
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Multiple Regression Analysis (MRA) is the most common methodology used to 
address the first issue, the estimation of aggregate damages across the class.5 In some 
cases the MRA has been extended to address the second issue, the determination of 
the extent of impact across the class.6 This article discusses two standard MRA 
methodologies often used to estimate classwide damages, and how both can be 
extended to address the impact issue. 

2.0 Assumptions 

We consider a price-fixing class action that alleges antitrust violations involving 
multiple defendants supplying multiple products at issue to a large number of multiple 
direct purchaser class members. Since the issues of damages and impact are only 
relevant if the trier-of-fact determines that the challenged behavior occurred, that is, that 
defendants are liable for the alleged antitrust conduct, we assume that the defendants 
will be found liable. We do not, however, assume that the challenged behavior elevated 
prices or that any impact of the conspiracy was classwide. The questions of damages 
and impact are, in fact, the subject of the econometric analysis.7 

We assume that MRA will be used to compare prices during the alleged class 
period (or “conspiracy period”) to prices during a benchmark period believed to be free 
of anticompetitive behavior. For purposes of our discussion we assume that the 
benchmark period consists of a time prior to the onset of the conspiratorial behavior, 
although the methodologies discussed herein can be extended to benchmarks that 
consist of times both before and after the conspiracy period, only after the conspiracy 
period, and even to “yardstick” benchmarks defined as comparable but unaffected 
markets concurrent with the conspiracy period. The data in both the benchmark and 
class periods are assumed to consist of numerous transactions between defendants 
and plaintiffs. In simple terms, the MRA consists of an equation that relates a variable 
of interest, the “dependent variable,” to a set of variables, the “explanatory variables,” 
thought to be related to the dependent variable. The dependent variable in MRAs 
involving antitrust allegations is almost always the natural logarithm of the unit price of 
 

5 See, e.g., Rubinfeld, D.L. (2011). “Reference Guide on Multiple Regression,” Reference Manual on 
Scientific Evidence, Third Edition, pp. 303-357 at p. 306: “antitrust violations” listed among types of cases 
for which “regression analysis has been used most frequently.” 
6 See, e.g., In re Air Cargo Shipping Services Antitrust Litigation, 2014 WL 7882100 (E.D.N.Y., 2014); In 
re Korean Ramen Antitrust Litigation, 2017 WL 235052 (N.D.Cal., 2017); In re Capacitors Antitrust 
Litigation (No. III), 2018 WL 5980139 (N.D.Cal., 2018); In re Packaged Seafood Antitrust Litigation, 332 
F.R.D. 308 (S.D.Cal., 2019); In re Disposable Contact Lens Antitrust, 329 F.R.D. 336 (M.D.Fla., 2018); In 
re Peanut Farmers Antitrust Litigation, Case No. 2:19-cv-00463-RAJ-LRL (E.D.Vir., 2020); Wortman v. Air 
New Zealand, 326 F.R.D. 549 (N.D.Cal., 2018); In re Broiler Chicken Antitrust Litigation, 2022 WL 
1720468 (N.D. Ill., 2022); In re Pork Antitrust Litigation, Civil No. 18-1776 (JRT/JFD), MDL No. 21-2998 
(MN, 2023); In re Turkey Antitrust Litigation, Civil No. 19 C 8318 (SRH), (N.D.Il, 2024); In re HDD 
Suspension Assembly Antitrust Litigation, Civil No. 19-md-02918-MMC (N.D. Cal., 2024). 
7 If a reliable econometric analysis finds that prices were elevated above competitive levels, the analysis 
provides empirical support for plaintiffs’ allegations of anticompetitive conduct. 
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transactions, which we represent by P and call “price” without repeating “logarithm of” 
each time.8  We also assume that the econometrician has correctly identified relevant 
explanatory variables impacting prices that are unrelated to the alleged conspiratorial 
behavior, represented by the matrix X. The explanatory variables consist of both 
time-related variables, like cost and demand, and cross-sectional variables, like 
customer and product characteristics. We will refer to the variables in X as the 
“competitive explanatory variables” (CEVs). We assume that the MRA models in this 
exposition are well-specified, and Ordinary Least Squares (OLS) is used to provide 
estimates of the relationship between P and X.9 We understand that model 
specification will likely be challenged during class certification. This article, however, 
focuses on the MRA methodology for assessing damages and impact across the class; 
challenges to model specification go to the validity of the model specification rather than 
the underlying methodology. 

The following sections consider each of the steps of an econometric analysis 
intended to address the issues of damages and impact across the putative class. We 
compare the forecasting and dummy variable methods for accomplishing each step of 
the analysis. 

3.0 Model Specification 

3.1 Forecasting Model 

The forecasting method uses data during only the benchmark period to estimate 
the relationship between price and the CEVs X. The forecasting model specification 
can be written as: 

Pt,ij = βXt,ij + εt,ij (1) 
 

where Pt,ij is (the logarithm of) the price paid by customer i for product j at time t; Xt,ij 
represents the values of the CEVs corresponding to that transaction; β is a vector of 
coefficients that relate price to the CEVs; and εt,ij is the “error term,” which is the 
difference between the actual price and the regression model’s characterization of the 
price effects of the CEVs.10 We assume that the errors are random variables with mean 
 
 
 
 
8 The use of the logarithmic transformation of prices in econometric models is common both in legal 
applications and more generally. Gujarati, D.N., and Porter, D.C. (2009). Basic Econometrics, 5th ed., pp. 
159-162. The methods described herein are also applicable to models of price in (untransformed) levels. 
9 Our discussion can be expanded to include other estimation techniques, such as weighted and 
generalized least squares, with an appropriate expansion of assumptions necessary for their validity. 
10 Transactions are sometimes aggregated over some time period, such as weeks or months for specific 
customers, products, and other transaction classifications. The model is estimated using aggregated 
observations rather than individual transactions. We use “transaction” to refer to the observations used to 
estimate the model, whether individual or aggregated. 
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zero and are orthogonal to X.11 Both Pt,ij and Xt,ij are observable; β and εt,ij are not 
observable and must be estimated. 

3.2 Dummy Variable Model 

Unlike the forecasting method which uses only transactions during the 
benchmark period to estimate the CEVs’ relationships with price, the dummy variable 
method uses transaction data during both the benchmark and class periods to estimate 
those relationships. The model specification is otherwise analogous to that for the 
forecasting model. During the benchmark period the model is the same as forecasting 
equation: 

Pt,ij = βXt,ij + εt,ij (1) 
 

During the class period, however, the model must allow not only for the price 
effects of the CEVs, the model must include an additional factor to account for potential 
price effects of the conspiracy: 

Pt,ij = βXt,ij + 𝜏𝜏t,ij + εt,ij (2) 
 

where 𝜏𝜏t,ij is the true overcharge associated with the (t,ij) transaction in the class period. 
It is included in the model specification to enable the determination of whether the 
transaction was overcharged and, if so, to what extent. 

Because transactions during both periods will be used to estimate the dummy 
variable model, we combine the benchmark and class period equations into a single 
model specification: 

Pt,ij = βXt,ij +𝜏𝜏t,ijDC + εt,ij (3) 
 

where DC is equal to one for transactions in the class period, and equal to 0 for 
transactions in the benchmark period. The variable DC is referred to as an “indicator” or 
“dummy” variable, which has the effect of only including the potential overcharge for 
transactions during the class period. 
 
 
4.0 Estimation of the Aggregate Classwide Overcharge 

4.1 Forecasting Method 

The forecasting method for estimating damages uses equation (1) to forecast 
prices during the class period. Since the forecasting model is estimated using only 
 
11 We understand that, like model specification, the error term assumptions may be challenged. Such 
challenges often relate to model specification, such as violation of independence between X and ε due to 
claimed endogeneity of certain explanatory variables. Such challenges are distinct from the evaluation of 
the methodology’s reliability. 
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transactions during the benchmark period, the forecasted prices during the class period 
are often referred to as “but-for” prices, meaning that the forecasted prices are an 
estimate of the prices that would have occurred during the class period in the absence 
of – “but-for” – the conspiracy. 

Actual transaction prices during the class period can be represented using the 
same class period specification as for the dummy variable method: 

Pt,ij = βXt,ij +𝜏𝜏t,ij + εt,ij (4) 
 

where 𝜏𝜏t,ij is included to enable the determination of the existence and extent of the true 
overcharge, if any, associated with the (t,ij) transaction in the class period. Note that the 
relationship between the price Pt,ij and the CEVs, represented by βXt,ij, is the same 
during the class period as during the benchmark period. This equivalence is a 
fundamental assumption underlying the forecasting model. 

We next determine whether the class period transactions were elevated in 
aggregate. The true classwide overcharge 𝜏𝜏 is defined as the mean of the individual 
class period transaction’s overcharges: 

𝜏𝜏 = ∑C 𝜏𝜏t,ij ÷ NC (5) 

where ∑C adds the individual transactions overcharges over the NC class period 
transactions. Using equation (4) to substitute for the individual transaction overcharges, 
we have: 

𝜏𝜏 = ∑C (Pt,ij - βXt,ij - εt,ij ) ÷ NC (6) 

Because both the CEVs coefficients β and the error terms ε are unobservable, 𝜏𝜏 must 
be estimated. 

Ordinary Least Squares (OLS) can be used to estimate the price effects, β, of the 
CEVs, X, using only transactions during benchmark period, producing the estimation 
equation: 

pt,ij = bXt,ij (7) 
 

where pt,ij is the forecasting model’s estimated price for customer i who purchased 
product j at time t. The vector of coefficients b is the estimate of the relationship 
between price and each of the CEVs. Note that the OLS estimate for the error term εt,ij 
is its mean value, zero. Substituting the OLS estimates into (6) produces an estimate of 
𝜏𝜏: 

E =  ∑C (Pt,ij - bXt,ij) ÷ NC (8) 
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The estimate E is therefore the mean of the differences between the actual prices and 
the forecasting model’s estimated but-for prices across all transactions in the class 
period. Under the assumptions underlying the forecasting model, E has optimal 
statistical properties for estimating 𝜏𝜏, and is the well-accepted method for estimating the 
aggregate classwide damages using the forecasting method.12 An important 
characteristic of this aggregate classwide overcharge estimate is that to the extent any 
class period transaction was not affected by the alleged price fixing, it does not 
contribute to the damages estimate. Thus there is no concern about inflating the 
damages estimate by including the unimpacted class members’ transactions.13 

4.2 Dummy Variable Method 

Like the forecasting method, the application of the dummy variable method 
typically begins with estimating the classwide aggregative overcharge. To accomplish 
this, remembering that the model will be estimated using transactions during both the 
benchmark and damages periods, we incorporate the true aggregate overcharge 𝜏𝜏 in 
the dummy variable model specification (2): 

Pt,ij = βXt,ij + 𝜏𝜏t,ijDC + εt,ij  = βXt,ij +𝜏𝜏DC + δt,ij (9) 

where 

δt,ij  = (𝜏𝜏 t,ij - 𝜏𝜏)DC + εt,ij (10) 

Note that δt,ij consists of two components for transactions during the class period: the 
difference between the individual transaction’s overcharge and the aggregate 
overcharge, and the error term. Since the aggregate overcharge is the mean of the 
class period transactions’ overcharges, the first term sums to zero over the class period. 
Recall that we assume that the model’s CEVs, X, and the dummy variable DC, are 
orthogonal to the error term ε, which has a mean value of zero.14  The values of Pt,ij, Xt,ij, 
and D are observable; the values of β, 𝜏𝜏, and δt,ij are unobservable. 
 
 
 
12 Under the model assumptions, OLS estimates are unbiased and consistent. See, e.g., McCrary, J. and 
Rubinfeld, D.L. (2014). “Measuring Benchmark Damages in Antitrust Litigation,” Journal of Econometric 
Methods, 3(1): 63-74, equation (7) at 65. The equation there is a quantity weighted sum, assuming the 
price model is in levels (dollars) rather than logarithms (percentages). That equation and equation (8) 
herein share the property that the aggregate overcharge is calculated using the sum of differences 
between actual and forecasted prices (or logarithmic prices) over all transactions during the class period. 
13 Technically, the expected value of unimpacted transactions is zero. 
14 The inclusion of potential overcharges in the class period residuals may introduce heteroscedasticity – 
unequal variances – between the benchmark and class period residuals. OLS estimates remain unbiased 
and statistically consistent in the presence of heteroscedasticity. Tests for statistical significance can be 
adjusted for potential heteroscedasticity using robust standard errors. See, e.g., Kennedy, P. (2008). A 
Guide to Econometrics, 6th ed., pp. 113, 115. 
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Model (9) is estimated using OLS. which provides estimates of both the CEVs 
coefficients β and the classwide overcharge 𝜏𝜏, using all transactions in both the 
benchmark and class periods. The estimated regression model is: 

pt,ij = bXt,ij + E×DC (11) 

where pt,ij is the estimated (logarithmic) price for customer i who purchased product j at 
time t. Thus, the application of OLS to the dummy variable model provides not only 
estimates of the price effects b of the CEVs, but also the estimate E of the classwide 
overcharge estimate 𝜏𝜏. 

Recall that the forecasting model’s estimate of E is obtained by calculating the 
mean difference between actual and forecasted but-for prices during the class period, 
shown in (8). This may at first appear to be very different from the estimate obtained 
from the dummy variable method that uses all transactions in both periods to 
simultaneously estimate β and 𝜏𝜏 by b and E, respectively. The difference, however, is 
more illusory than real. 

In fact, the OLS calculation of the aggregate classwide overcharge estimate for 
the dummy variable model, like the forecasting model’s estimate, consists of the mean 
difference between the actual and estimated but-for prices during the class period: 

E =  ∑C (Pt,ij - bXt,ij) ÷ NC (12) 

This formula is identical to equation (8) used to estimate the aggregate overcharge by 
the forecasting method.15 As with the forecasting method, the estimated price bXt,ij from 
the dummy variable model is the “but-for” price, meaning the estimated price absent the 
price effect of the conspiracy. The only difference is the data used to estimate the CEVs 
price effects, b: only benchmark transactions for the forecasting method, both 
benchmark and class period transactions for the dummy variable method. Both the 
dummy variable method and the forecasting method, however, estimate the aggregate 
classwide overcharge by the mean difference between actual and but-for prices during 
the class period. 

4.3 Testing the Statistical Significance of the Estimated Aggregate Overcharge 

For both methods, we use 𝜏𝜏 to represent the true classwide aggregate 
overcharge, defined as the mean difference between the actual prices paid during the 
class period and the “true” but-for prices. An exact determination of whether the true 
 
 
 

 
15 The proof that the dummy variable’s OLS overcharge estimate E is the mean difference between actual 
and but-for prices during the class period is in the Appendix. 
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classwide overcharge 𝜏𝜏 is greater than zero is impossible, because the true but-for 
prices are unobservable, having been “hidden” by the conspiratorial behavior.16 

Standard statistical methods can be used to make inferences about the true 
aggregate overcharge. Specifically, we can test the competing hypotheses that the true 
overcharge is zero, meaning that the challenged conduct did not elevate prices across 
the class, vs. that the true overcharge is positive, meaning that prices were elevated. In 
statistical parlance, we test the null hypothesis that 𝜏𝜏 is zero – no classwide overcharge 
– against the alternative hypothesis that 𝜏𝜏 is greater than zero – positive classwide 
overcharge. Fundamentals of statistical testing assume that the null hypothesis is true 
unless the data convincingly indicates it is not. In this application, the assumption is 
that the conspiracy has not elevated prices unless and until the class period 
transactions provide convincing statistical evidence to the contrary. 

The best statistical estimate of the hidden true classwide overcharge is E as 
specified above for both the forecasting model and the dummy variable model.17 The 
test is conducted by comparing E to the variability of the estimate. We omit the 
technical details of the tests, focusing on the potential results of the test. If the data fail 
to provide sufficient evidence to support the alternative hypothesis, the conclusion is 
that E is not “statistically significant.” If the statistical test does provide sufficient 
evidence to support the alternative hypothesis that prices were elevated during the 
class period, E is said to be “statistically significant.”18 

If the test result is that E is not statistically significant, the question of the extent 
of classwide impact may be considered moot.19 On the other hand, if the test supports 
the hypothesis that 𝜏𝜏 is positive – E is statistically significant –, it provides statistical 
 
16 See Story Parchment Co. v. Paterson Parchment Paper Co., 282 U.S. 555 (1931); Tyson Foods, Inc. v. 
Bouaphakeo, 577 U.S. 442 (2016). 
17 Here “best” means that E is the unbiased estimate of 𝜏𝜏 with the smallest variance. 
18 “Statistical significance” in hypothesis testing is measured by the likelihood that the estimated 
overcharge E would have been observed by chance when the true overcharge 𝜏𝜏 is zero, that is, when the 
null hypothesis is true. This likelihood is referred to as the significance level of the test, and the smaller 
the significant level, the more convincing the evidence for the alternative hypothesis and against the null 
hypothesis. One of the most common significance levels used in testing is .05, meaning that the 
alternative hypothesis is accepted only if the data indicate less than a 5% probability that the size of the 
overcharge estimate E would have occurred if the true overcharge 𝜏𝜏 were zero. In that case, we refer to 
E as “statistically significant” at the 5% level of significance. Technical details of testing hypotheses can 
be found in any standard statistics or econometrics texts. See, e.g., McClave, J.T., Benson, P.G., and 
Sincich, T. (2018). Statistics for Business and Economics, 13th ed., Chapter 7. 
19 Failure to find statistical significance does not, standing alone, indicate that the conspiracy did not 
inflate prices. Statistical tests have the possibility of failing to support the alternative hypothesis even 
when it’s true. If the true classwide overcharge is positive but the test failed to find a statistically 
significant effect, the test resulted in a “false negative.” If the true classwide aggregate overcharge is zero 
and the test has correctly found no statistical significance, no further assessment of classwide impact is 
warranted. 
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evidence that prices were elevated during the class period to an extent that is consistent 
with having been caused by the conspiracy and inconsistent with having been caused 
by the non-conspiratorial explanatory factors – the CEVs –, or by other idiosyncratic 
random effects on prices. In some cases the statistical significance of the classwide 
overcharge estimate could, if accompanied by other economic and documentary 
evidence, be found sufficient to support the inference of classwide impact.20 For 
purposes of this discussion, however, we assume that further econometric analysis is 
conducted to assess classwide impact. 
 
 
5.0 Econometric Assessment of Impact 

Statistical significance of E supports the inference that the true classwide 
overcharge, 𝜏𝜏, is positive. 𝜏𝜏 is the mean of individual class period transactions 
overcharges,𝜏𝜏 t,ij,. Like 𝜏𝜏, however, 𝜏𝜏t,ij is not observable; it has to be estimated because 
the conspiracy concealed the prices that would have been paid “but for” its existence. 
Just as E provides an estimate of the true overcharge E, the transactional components 
of E provide estimates of the true overcharge for each transaction. The comparisons of 
actual prices and but-for prices based on either the forecasting or dummy variable 
method associated with each class period transaction are: 

Et,ij = Pt,ij - bXt,ij (13) 
 

where Et,ij is the overcharge estimate for transaction (t,ij) during the class period. 

For both methods class period prices consist of price effects of the CEVs, the 
potential overcharge, and random error: 

Pt,ij = βXt,ij + 𝜏𝜏t,ij + εt,ij  ̀ (14) 
 

Substituting this expression into (1) expresses the individual transaction’s estimated 
which, when substituted into the individual overcharge equation (13), produces: 

Et,ij = (β-b)Xt,ij + 𝜏𝜏t,ij + εt,ij (15) 
 
20 For example, proof of a pricing structure can be used to infer common impact. See, e.g., In re 
High-Tech Employee Antitrust Litigation, 985 F.Supp.2d 1167, at 1206 (N.D. Cal. 2013). Order Granting 
Plaintiffs’ Supplemental Motion For Class Certification (“Plaintiffs noted that Dr. Leamer’s approach 
followed a roadmap widely accepted in antitrust class actions that uses evidence of general price effects 
plus evidence of a price structure to conclude that common evidence is capable of showing widespread 
harm to the class.”); Memorandum Opinion and Order (Judge Sunil R. Harjani), In re Turkey Antitrust 
Litigation, Civil No. 19 C 8318 (SRH), (N.D.Il., Jan. 22, 2025) (“the Court determines that the evidence put 
forward by the DPPs, including Williams’ market structure analysis, overcharge regression model, 
supplemented by the in-sample prediction method, robustness checks on the overcharge regression 
analysis, correlation analyses, production regression, and record evidence, when combined, is sufficient 
to show common questions predominate as to common impact. Kleen, 831 F.3d at 925”). 
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As with the forecasting method, we rely on the fact that b is an unbiased estimate of β. 
Since the expected value of εt,ij is zero, it follows that Et,ij is an unbiased estimate of the 
true overcharge 𝜏𝜏t,ij for transaction (t,ij). 

Some have claimed that the dummy variable model’s specification assumes that 
all class members were overcharged by the same amount, the aggregate overcharge E. 
As shown above this is certainly not true, since E consists of individualized comparisons 
of actual and but-for prices for both the forecasting and dummy variable methods. The 
difference between each transaction’s estimated overcharge and the estimated 
aggregate overcharge is: 

dt,ij = E t,ij - E (16) 

Substituting (13) for the transaction overcharge: 

dt,ij = (Pt,ij - bXt,ij ) - E = Pt,ij - (bXt,ij + E) (17) 

The first expression in (17) is the difference between each class period transaction’s 
overcharge and the aggregated overcharge. The second expression is the difference 
between the transaction’s actual price and the dummy variable model’s estimated price 
during the class period (11). Differences between actual and estimated values in a 
regression model are the model’s “residuals.”21 Thus, the differences in (17) are the 
dummy variable model’s residuals during the class period. Although the residuals sum 
to zero over the class period, there is no assumption that each residual is zero. A 
negative residual means that the transaction’s overcharge is lower than the aggregate 
overcharge; a positive residual means that the transaction’s overcharge is higher than 
the aggregate overcharge. If the residual is negative and exceeds E in absolute value, 
the inference is that the transaction was unimpacted by the conspiracy. 

Because both methods produce unbiased estimates of each class period 
transaction’s overcharge, we then provide econometric evidence of whether each 
transaction was impacted by comparing its actual and but-for price: 

Et,ij = Pt,ij - bXt,ij > 0 →  Impacted Transaction (18a) 

Et,ij = Pt,ij - bXt,ij ≤ 0 → Unimpacted Transaction (18b) 
 
 
 
 
 
 
 
 

 
21 See, e.g., McClave, J.T., Benson, P.G., and Sincich, T. (2018). Statistics for Business and Economics, 
13th ed., p. 760. 
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Customer-level impact is measured by determining whether the customer was 
overcharged on at least one transaction during the class period.22 For both the 
forecasting and dummy variable methods, this is expressed as follows for Customer i: 

Maxi(Et,ij) > 0 → Impacted Customer (19a) 

Maxi(Et,ij) ≤ 0 → Unimpacted Customer (19b) 

where Maxi denotes the calculation of the maximum value of the overcharges – the 
differences between actual and but-for prices -- across all of Customer i’s transactions.23 

Another measure of customer-level impact can be based on the customer’s 
mean estimated overcharge during the class period: 

Ei = ∑I (Et,ij) ÷ Ni (20) 

where ∑I denotes the sum over all Ni of customer i’s transactions during the class 
period, and Ei is the mean overcharge for customer i. Ei is the mean difference between 
Customer i’s actual prices and but-for prices under both methods. These 
customer-level overcharge estimates can be used as an estimate of customer-level net 
impact: 

Ei > 0  → Net Impacted Customer (21a) 

Ei ≤ 0 → Net Unimpacted Customer (21b) 

The percentage of customers impacted on at least one transaction and the percentage 
of customers with positive mean overcharges are two measures of the degree to which 
overcharges are experienced throughout the class. Higher values of these percentages 
imply more widespread impact across the class. 
 
 
 
 
22 See Opinion, In Re: Generic Pharmaceuticals Pricing Antitrust Litigation, MDL NO. 2724 (E.D.Penn. 
Dec. 3, 2024), p. 22 (“Courts do not consider whether antitrust injury occurs on an overall basis—a court’s 
inquiry on the matter is limited to determining whether a single overcharge occurred.”). See also Adams v. 
Mills, 286 U.S. 397, 407 (1932) (“In contemplation of law the claim for damages arose at the time the 
extra charge was paid”); Hawaii v. Standard Oil of Cal., 405 U.S. 251, 262 n.14 (1972) (“courts will not go 
beyond the fact of this injury to determine whether the victim of the overcharge has partially recouped"); 
and In re Nexium Antitrust Litig., 777 F.3d 9, 27 (1st Cir. 2015) (“antitrust injury occurs the moment the 
purchaser incurs an overcharge, whether or not that injury is later offset.”). 
23 Recall that this further assessment of class member impact only proceeds once an aggregate 
overcharge has been detected. By design, the benchmark period is assumed to be a period of 
competitive pricing and thus there is no aggregate overcharge; thus, there can be no assessment class 
member impact during a period during which there is no alleged conspiracy. The benchmark transactions 
are assumed to have no overcharge attributable to the conspiracy. As a result, the model’s benchmark 
residuals will be distributed around their mean value of zero. Any attempt to interpret positive benchmark 
residuals as some kind of “false positive” indication of impact is a misinterpretation of a foundational 
statistical result. 
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To summarize, we proceed to impact assessment only if the estimate of 
aggregate classwide overcharges, E, is statistically significant.24 This test accompanied 
by high percentages of class members paying at least one overcharge (19a) and of net 
impacted class members (21a) provide strong econometric evidence of classwide 
impact.25 Defendants may argue that more evidence is required, including statistical 
significance not only of the aggregate overcharge, but also of individual class member’s 
estimated overcharges. Most proposed classes, however, consist of large numbers of 
customers with a small number of transactions. Small customers with few transactions 
are less likely to produce statistically significant overcharge estimates, even if they were 
truly impacted by the conspiracy. Technically, the power of any tests conducted to find 
statistical significance even when small customers are impacted is low, meaning that 
the tests are likely to result in numerous false negatives, that is, tests failing to reveal 
impact when it is present.26 Requiring statistical significance for each of hundreds or 
thousands of class members’ overcharges is an artificial barrier that approaches 
statistical impossibility. 
 
 
6.0 Assessing Class Composition 

In the determination of classwide damages and impact, we assume that the 
defendants conspired. We did not assume, however, either that prices were elevated or 
that all or nearly all class members were impacted. We have shown that both the 
forecasting and dummy variable methods provide a reliable econometric methodology 
both to measure classwide overcharges and to determine the extent of classwide 
impact. If none or very few potential class members were impacted by the conspiracy, 
the estimate E of the aggregate overcharge is expected to fail to pass the test of 
statistical significance. If, however, some portion of the class is impacted but the class 
composition was over-specified so that another portion is unimpacted, we want the 
econometric analysis to reflect the difference. If the unimpacted portion is substantial, 
we expect both the aggregate overcharge estimate and the percentages of impacted 
customers to be lower using the metrics described in the previous section. 

Further analysis of transaction- and customer-level estimated overcharges can 
shed additional light on impact. A better alternative to extensive, low-power statistical 
testing at the class member level is to compare the distribution of the overcharge 
 

24 Failing to find E as statistically significant when in fact the classwide overcharge 𝜏𝜏 is positive (that is, 
the test resulted in a “false negative”) would be more likely if a substantial portion of the proposed class 
was not impacted by the conspiracy, but still some portion was impacted. Detection of this disparate 
impact would require further analysis that might provide an altered class definition. 
25 See, e.g., supra note 5. 
26 See, e.g., Pindyck, R.S. and Rubinfeld, D.L. (1998). Econometric Models and Economic Forecasts, 4th 
ed., pp. 43-44; McClave, J.T., Benson, P.G., and Sincich, T. (2018). Statistics for Business and 
Economics, 13th ed., p. 415. 
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estimates in the class period to the distribution of residuals in the benchmark period. 
Benchmark residuals are the differences between the actual price and the model’s 
estimated price during the benchmark period, calculated as follows for both forecasting 
and dummy variable models: 

Rt,ij = Pt,ij - pt,ij = Pt,ij – bXt,ij (22) 
 

When b is estimated using OLS, the mean of the benchmark period residuals is equal to 
zero. The distribution of the benchmark period transactions’ residuals will cluster 
around zero, with approximately half having positive values and half negative values. 

The distribution of residuals can be compared to the distribution of their 
counterparts in the class period, the transactions’ differences between the actual and 
“but-for” prices: 

Et,ij = Pt,ij - bXt,ij (23) 
 

These transaction overcharges will be distributed around their mean, which is the 
aggregate overcharge estimate, E. 

The comparison can be extended to the customer level by aggregating the 
residuals and the overcharge estimates across each customer’s transactions. The 
customer-level aggregations for Customer i are: 

Ri = ∑i (Rt,ij) ÷ Ni (24a) 

Ei = ∑i (Et,ij) ÷ Ni (24b) 

for the benchmark transactions and class transactions, respectively. The values of Ri 
will be distributed around zero and the values of Ei will be distributed around E. 

If the impact is classwide and relatively similar throughout the class period, the 
distribution of customer overcharges should be unimodal, similar in shape to the 
distribution of the residuals during the benchmark period but moved to the right, as 
demonstrated in Figure 1. If the classwide aggregate overcharge to purchases is 0.2 
(an approximate 20% overcharge) and all class members were overcharged to an 
extent that distributes them around 0.2, the distribution of overcharge estimates could 
appear like that depicted on the right side of Figure 1. While the benchmark residuals 
cluster around zero, the class period overcharges are shifted to the right. 
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If, however, impact varies significantly among different groups of class members, 

the distribution of the customer overcharges will be multi-modal. For example, suppose 
some subset of class members was unimpacted by the conspiracy. This means that the 
true overcharge across the class consists of two distinct components: 

𝜏𝜏 = [∑S1 (𝜏𝜏t,ij) + ∑S2 (𝜏𝜏t,ij)] ÷ NC (25) 

where S1 is the subset of transactions for unimpacted customers and S2 is the subset 
of transactions for impacted customers. By definition, the first sum over unimpacted 
customers is zero, so the true total overcharge reduces to just the sum over the 
impacted subset: 

𝜏𝜏 = [0 + ∑S2 (𝜏𝜏t,ij)] ÷ NC (26) 

Suppose, for example, that half the transactions (and customers) are in each subset. 
The inclusion of both subsets in the calculation will result in an underestimate of the true 
overcharge to the impacted subset S2 by half. That is, the divisor of 𝜏𝜏 in (26) should be 
½NC, the number of impacted transactions, rather than NC, the total of both unimpacted 
and impacted transactions. 

Whereas the forecasting model specification remains unchanged despite the 
class over-specification, the dummy variable model can be written to reflect it: 

Pt,ij = βXt,ij + (0×DC1 +𝜏𝜏 t,ij ×DC2) + δt,ij (27) 



15  

where DC1 is an indicator (“dummy”) variable equal to 1 for transactions in the 
unimpacted subset S1 during the class period, and equal to 0 otherwise; and DC2 is an 
indicator variable equal to 1 for transactions in the impacted subset S2 during the class 
period, and equal to 0 otherwise. Thus, the elevated prices are confined to only 
transactions in S2, and there is no price elevation in S1 transactions. 

Assuming the model (9) with a single classwide indicator is estimated prior to 
identification of the unimpacted subset of transactions, the specification is unchanged, 
but the coefficient of the dummy variable is a fraction of the true overcharge 
experienced by the impacted subset: 

Pt,ij = βXt,ij + (q×𝜏𝜏)×DC + δt,ij (28) 

where q is the proportion of class period transactions in the impacted subset S2 and the 
indicator variable Dc spans all transactions in the class period, including both S1 and S2. 
Since q is unobservable, when OLS is used to estimate the model using this 
specification, the result appears the same as (11): 

pt,ij = bXt,ij + E×DC (11) 

where b is the estimate of β, and E is the estimate of the aggregate classwide 
overcharge, q×𝜏𝜏. For example, if half the class transactions are impacted, the 
estimated classwide overcharge E will be an unbiased estimate of half the true mean 
overcharge across the impacted sub-class, ½𝜏𝜏.27 

Assuming that half of the class transactions are unimpacted but with no a priori 
knowledge of which transactions and proposed class members are in the unimpacted 
subset, we turn once again to an analysis of the individual contributions to the 
aggregate overcharge estimate. This analysis for both the forecasting and dummy 
variable methods examines the differences between actual and but-for prices during the 
class period, Et,ij, and the corresponding customer-level overcharges, Ei. The 
distribution of both individual and customer-level overcharge estimates will be bimodal, 
with half clustered around zero (mimicking the distribution of the benchmark’s residuals) 
and half clustered around twice the estimated aggregated overcharge across the 
impacted sub-class, 2⨯E. 

For example, if half of purchasers were not impacted by the price-fixing 
conspiracy, and the half that are impacted have an aggregate overcharge of 0.2, the 
distribution of the class member’s overcharges will be bimodal for both the forecasting 
and dummy variable methods, like that shown in Figure 2. 
 

 
27 Note that any claim that the presence of unimpacted customers somehow increases the overcharge is 
false. In fact, their presence results in a lower overcharge. 
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In summary, if a specific subset of the class transactions is unimpacted, the 
analysis described above will expose the difference between impacted and unimpacted 
transactions and will assist in the identification of the underlying distinction between the 
two. Identification of the members of each subset would normally require an 
investigation to determine whether they share some common property. For example, 
unimpacted customers might have purchased different products or might have made 
their purchases in a different geographic market than impacted customers. Once 
identified, a test of statistical significance for the difference between the means of the 
two subsets could be conducted to confirm that the class was over-specified. This 
same analysis can be extended to an appearance of multi-modal distributions 
attributable to subsets of class transactions with different levels of impact reflected by 
different aggregate overcharges. The econometric analyses of impact described in this 
and the previous section are likely to expose the fact that a substantial portion of the 
class was unimpacted. 
 
 
7.0 Conclusion 

The estimate of the aggregate classwide overcharge under both the forecasting 
method and the dummy variable method consists of comparing actual prices and the 
model’s estimated but-for prices for all transactions during the class period. Under 
standard model assumptions, the difference for each transaction is a statistically 
unbiased estimate of the transaction’s overcharge attributable to the challenged 
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conduct. Customer-level aggregations of the differences between actual and but-for 
prices inform the extent of impact across the class. 

Both methods offer numerous assessments of impact after the aggregate 
overcharge has been estimated and found to be statistically significant: 

1. The calculation of the percentage of customers with at least one impacted 
transaction during the class period. 

2. The calculation of the percentage of customers with positive mean overcharges 
during the class period. 

3. Comparisons of the distributions of customer overcharges during the class period 
to the distribution of residuals during the benchmark period. 

4. Examination of reasons for possible bimodal (or multi-modal) distributions of 
overcharge estimates for different subsets of customers, including the 
identification of potentially unimpacted customers. 
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The following table demonstrates that the application of the forecasting and dummy 
variable methods to measure classwide damages and to assess classwide impact is 
essentially identical. 
 
 

Forecasting Method 

Model: 
Pt,ij = βXt,ij + εt,ij 

 

Assumptions: 
εt,ij mean zero, independent of X 

 
OLS Price Estimate: 
Based on Benchmark Only 
pt,ij = bXt,ij 

Classwide Aggregate Overcharge 
Mean of Actual minus But-For Price: 
E = ∑C (Pt,ij - bXt,ij) ÷ NC 

 
Test of Statistical Significance: 
Compares E to its Std. Error 

Assessment of Classwide Impact: 

Transaction Overcharge 
Actual minus But-For Price: 
Et,ij = Pt,ij - bXt,ij 

 

Impacted Transaction: 
Et,ij > 0 

 

Impacted Class Member: 
At least one impacted transaction: 

Maxi(Et,ij > 0) 
 
Net overcharge positive: 

[∑i (Et,ij) ÷ Ni] > 0 
 
Detection of Unimpacted Class Subset: 

Bimodal Distribution of Overcharges 
Unimpacted Subset Mode Near Zero 

Dummy Variable Method 

Model: 
Pt,ij = βXt,ij + 𝜏𝜏 t,ij×DC + εt,ij 

 

Assumptions: 
εt,ij mean zero, independent of X and DC 

 
OLS Price Estimate: 
Based on Benchmark and Class 
pt,ij = bXt,ij + E×DC 

Classwide Aggregate Overcharge 
Mean of Actual minus But-For Price: 
E = ∑C (Pt,ij - bXt,ij) ÷ NC 

 
Test of Statistical Significance: 
Compares E to its Std. Error 

Assessment of Classwide Impact: 

Transaction Overcharge 
Actual minus But-For Price: 
Et,ij = Pt,ij - bXt,ij 

 

Impacted Transaction: 
Et,ij > 0 

 

Impacted Class Member: 
At least one impacted transaction: 

Maxi(Et,ij > 0) 
 
Net overcharge positive: 

[∑i (Et,ij) ÷ Ni] > 0 
 
Detection of Unimpacted Class Subset: 

Bimodal Distribution of Overcharges 
Unimpacted Subset Mode Near Zero 
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Appendix: Disaggregation of the 
Dummy Variable Model’s Classwide 
Overcharge Estimate 

 
 
∑ [𝑃𝑃 

 ∂[𝑂𝑂𝑂𝑂𝑂𝑂(𝑏𝑏,𝐸𝐸)]  
∂𝐸𝐸 

 
− 𝑏𝑏𝑏𝑏 

= -2 

− 𝐸𝐸𝐸𝐸 ] 

 

 
x 𝐸𝐸 

 

 
= -2 

Proposition: The OLS estimate of the 
aggregate classwide overcharge in a 

𝐵𝐵+𝐶𝐶 

∑ [𝑃𝑃 

𝑡𝑡,𝑖𝑖𝑖𝑖 

 
− 𝑏𝑏𝑏𝑏 

𝑡𝑡,𝑖𝑖𝑖𝑖 𝐶𝐶 𝐶𝐶 
 

− 𝐸𝐸] = 0 
dummy variable model is equal to the 

𝑡𝑡,𝑖𝑖𝑖𝑖 
𝐶𝐶 𝑡𝑡,𝑖𝑖𝑖𝑖 

mean difference between class period 
transactions’ actual prices and the 

Rearranging to solve for E: 

model’s but-for price estimates. 𝐸𝐸 =  1 ∑ [𝑃𝑃 − 𝑏𝑏𝑏𝑏 ] 
Proof: 

𝑁𝑁 
𝑐𝑐 𝐶𝐶 𝑡𝑡,𝑖𝑖𝑖𝑖 𝑡𝑡,𝑖𝑖𝑖𝑖 

The dummy variable model to be 
estimated is: 

This establishes that the sum of the 
observed residuals during the class 
period is zero, and that E is the mean of 

𝑃𝑃 
𝑡𝑡,𝑖𝑖𝑖𝑖 

= β𝑏𝑏 
𝑡𝑡,𝑖𝑖𝑖𝑖 

+ 𝜏𝜏𝐸𝐸 
𝐶𝐶 

+ δ 
𝑡𝑡,𝑖𝑖𝑖𝑖 the class period transactions’ 

differences between actual and but-for 
Using OLS, estimates b of β and E of 𝜏𝜏 
are calculated to minimize the sum of 
squared differences between the actual 
and estimated prices over the periods – 
benchmark and class – covered by the 
data: 

estimated prices. 

OLS(b,E) = Min 
⎰ 2⎱ 
∑ [𝑃𝑃 − 𝑏𝑏𝑏𝑏 − 𝐸𝐸𝐸𝐸 ] 

⎱𝐵𝐵+𝐶𝐶 𝑡𝑡,𝑖𝑖𝑖𝑖 𝑡𝑡,𝑖𝑖𝑖𝑖 𝐶𝐶  ⎰ 

A necessary condition to achieve this 
minimum is that the partial derivative 
with respect to the estimated 
parameters b and E must equal zero.28 
The partial derivative with respect to E 
is: 
 
 
 
 
 
 
 
 
 
28 Yan, X. and Su, X. (2009). Linear Regression 
Analysis: Theory and Computing, pp. 10-12. 
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