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Abstract. We present a new e-class command, acfest, that implements the
method of Ackerberg, Caves, and Frazer (2015, Econometrica 83: 2411–2451) to
estimate production functions. This method deals with the functional depen-
dence problems that may arise in the methods proposed by Olley and Pakes (1996,
Econometrica 64: 1263–1297) and, particularly, Levinsohn and Petrin (2003, Re-
view of Economic Studies 70: 317–341) (implemented in Stata by Yasar, Raci-
borski, and Poi [2008, Stata Journal 8: 221–231] and Petrin, Poi, and Levinsohn
[2004, Stata Journal 4: 113–123], respectively). In particular, the acfest com-
mand yields (nonlinear, robust) generalized method of moments estimates using a
Mata function and two specification tests (Wald and Sargan–Hansen). After esti-
mation, predict provides the estimated productivity of the firms in the sample.
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1 Introduction

Estimation of the parameters of a production function is key in many areas of eco-
nomics. Industrial organization is of course the prominent example, because this is
one of the main empirical tools for analyzing market outcomes (Ackerberg et al. 2007).
But the use of production functions is not uncommon in empirical studies in interna-
tional economics (for example, Pavcnik [2002]), environmental economics (for example,
Koźluk and Zipperer [2015]), and development economics (for example, Göbel, Grimm,
and Lay [2012]). At the macrolevel, production function estimates from microdata are
typically used to construct aggregates. Petrin and Levinsohn (2012), for example, have
recently shown how to use plant-level estimates by industry to estimate the aggregate
productivity growth of an economy.
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However, consistent estimation of the parameters of a production function can be
rather involved (Marschak and Andrews 1944). If firms optimally choose the level of
inputs consumed in the production process (that is, as the solution of a dynamic profit
maximization problem), then inputs are likely to be endogenous variables because the
error term of the model typically contains output determinants that are observed by the
firm but not by the analyst (notably, the firm’s productivity). This means that standard
estimation methods such as ordinary least squares (OLS) yield inconsistent estimates.
Also, more elaborate methods, such as the (instrumental variables) within-groups or
fixed-effects estimator, do not seem to work well either (Griliches and Mairesse 1998).

To control for the correlation between the unobservable productivity shocks and
the input levels, Olley and Pakes (1996) proposed using a firm’s investment as a proxy
variable for a firm’s productivity and a low-order polynomial to approximate the (un-
known) control function.1 When firms face substantial adjustment costs, however, the
investment variable may not be appropriate (it may not fully respond to changes in pro-
ductivity, and it may become severely truncated at zero). This led Levinsohn and Petrin
(2003) to propose an alternative approach that uses intermediate inputs rather than in-
vestments in the control function. This approach is not just potentially more efficient
but, because of the difficulties to obtain information on firm-level investment, often the
only one available.

Yet Ackerberg, Caves, and Frazer (2015) argue that these estimation strategies—
particularly, the one advocated by Levinsohn and Petrin (2003)—may suffer from iden-
tification issues. These authors show that unless additional assumptions are made about
the data-generating processes, the labor input may not vary independently of the non-
parametric function that is being estimated using the low-order polynomial. Further,
to avoid this functional dependence problem, Ackerberg, Caves, and Frazer (2015) pro-
pose an estimation procedure that draws on aspects of both the Olley and Pakes (1996)
and Levinsohn and Petrin (2003) two-stage procedures but that estimates all the input
coefficients (that is, including the labor coefficient) in the second stage.2

Yasar, Raciborski, and Poi (2008) implemented the Olley and Pakes (1996) proce-
dure in Stata, whereas Petrin, Poi, and Levinsohn (2004) did the same for the Levinsohn
and Petrin (2003) procedure. However, to date, the proposal by Ackerberg, Caves, and
Frazer (2015) is not available in Stata. In this article, we discuss its implementation as
a new e-class command named acfest. In particular, the rest of the article is set out
as follows. Section 2 reviews the relevant theory, section 3 discusses the syntax of the
acfest command, and section 4 illustrates the use of acfest using data on Spanish
manufacturing firms. Section 5 concludes.

1. Olley and Pakes (1996) also discuss how to address the sample selection bias arising from the
endogeneity of the exit decision (see Ackerberg et al. [2007, footnote 34] for a brief discussion
of the conditions under which this bias arises). In applications, however, evidence provided by
Olley and Pakes (1996), Levinsohn and Petrin (2003), and Van Beveren (2012) suggests that the
selection bias is much less important than the simultaneity bias. In any case, the opreg command
of Yasar, Raciborski, and Poi (2008) provides a simple procedure to control for this bias.

2. All of these methods bootstrap the standard errors to avoid deriving their complex analytical
expressions. In contrast, Wooldridge (2009) proposes a potentially more efficient one-step approach
that enables the standard errors to be estimated directly.
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2 Estimating production functions

In this section, we first lay out the model specification and then the main assump-
tions that sustain the method proposed by Olley and Pakes (1996). We do so using a
general framework in which the proposals of Levinsohn and Petrin (2003), Wooldridge
(2009), and Ackerberg, Caves, and Frazer (2015) are embedded. Next, we describe the
estimation procedure and point out the main differences between the methods pro-
posed by these authors. We conclude with the details of the method proposed by
Ackerberg, Caves, and Frazer (2015).3

2.1 Model specification

Let us assume that a firm’s production technology can be represented by a production
function f(· ) that relates output (Y ), inputs (X = [X1, X2, . . .]), and the (Hicksian
neutral) efficiency level of the firm (A), so that Y = f (Y,X, A). Also, let us assume
that firms produce a homogeneous good using a Cobb–Douglas technology,4

yjt = β0 +
∑
k

βkx
k
jt + ωjt + ηjt (1)

where yjt and xk
jt denote the log of output (value added or gross revenue) and the log of

the k input for firm j at period t, respectively, ln(Ajt) = β0 + εjt, and εjt = ωjt + ηjt.
5

In this vein, (1) has two unobservables: the log of a firm’s productivity (ωjt) and a
residual (ηjt) that is assumed to have the standard properties.6

3. The contents of this section are based on the work of Olley and Pakes (1996), Levinsohn and Petrin
(2003), Ackerberg, Caves, and Frazer (2015), and Ackerberg et al. (2007). See also Van Beveren
(2012) for a recent survey of the production function literature and Griliches and Mairesse (1998)
for a historical account. Petrin, Poi, and Levinsohn (2004) and Yasar, Raciborski, and Poi (2008)
provide an analysis of the estimation of production functions using Stata (the commands levpet

and opreg, respectively).
4. Although the Cobb–Douglas technology is the most commonly assumed, other production technolo-

gies may be considered as long as they satisfy certain conditions —see, for example, Olley and Pakes
(1996, footnote 18) and Ackerberg et al. (2007, footnote 14) for details.

5. We follow the usual practice in this literature of denoting a variable in levels with uppercase letters
and the log of a variable with lowercase letters.

6. “The constant term β0 can be interpreted as the mean efficiency level across firms, while εj is the
deviation from that mean for firm j”, that is, εj “might represent innate technology or manage-
ment differences between firms, measurement errors in output, or unobserved sources of variance
in output caused by weather, machine breakdowns, labor problems, etc.” Further, “ωj might rep-
resent factors like managerial ability at a firm, expected down-time due to machine breakdowns
or strikes, or the expected rainfall at a farm’s location”. Lastly, “ηj might represent deviations
from expected breakdown rates in a particular year or deviations from expected rainfall at a farm”
(Ackerberg et al. 2007, 4205–4207).
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Typically, output and inputs are observable by both the firm and the analyst; pro-
ductivity is observed only by the firm; and the error term is not observable, either by the
firm or by the analyst. This is why the correlation between labor and productivity ren-
ders OLS estimates of (1) biased and inconsistent (Marschak and Andrews 1944). Also,
standard approaches to endogeneity, such as the fixed-effects or within-groups estima-
tor and the instrumental-variable method do not work (Griliches and Mairesse 1998).
The fixed-effects estimator may deal with the labor-productivity correlation but at the
cost of imposing productivity shocks with no time variation. Similarly, instrumental-
variable methods are limited by the difficulty of finding appropriate instruments (that
is, variables that are correlated with the endogenous variable but uncorrelated with the
productivity term).

2.2 Assumptions

Rather than resorting to (flawed) standard estimation methods, one can derive the iden-
tification of (1) from “a dynamic model of firm behavior that [allows for] ‘idiosyncratic
uncertainty’ [and specifies] the information available when input decisions are made”
(Olley and Pakes 1996, 1271). This amounts to assuming that firms make decisions to
maximize the present discounted value of current and future profits in an environment
in which productivity is the (only unobserved) source of firm-specific uncertainty. In
particular, it is assumed that ωjt follows an exogenous first-order Markov process. Also,
the solution to the dynamic profit maximization problem generates a demand function
for the proxy variable (investment in Olley and Pakes 1996, intermediate materials in
Levinsohn and Petrin 2003) that, under certain assumptions, can be inverted to define
a firm’s productivity as a function of observables (the control function). These assump-
tions are of two types: the first relates to the inputs and the second to the control
function.

First, inputs are assumed to differ in two fundamental dimensions: whether their
current choice affects their cost in future periods (that is, their “dynamic nature”) and
whether the time period they are chosen for is the period in which they are used in the
production process (that is, their “timing”). With respect to their dynamic nature, we
can distinguish two types of input: those whose choice in the current period does not
have an impact on their cost of use in future periods (nondynamic inputs, including
labor and intermediate inputs, such as materials and energy) and those whose current
choice does have an impact on the future cost of input use (dynamic inputs, such as
capital and age, whose current value becomes a “state variable” of the firm’s dynamic
profit-maximization problem). As far as the timing is concerned, we can distinguish two
types of input: those that are chosen in the same period as they are consumed (free or
variable inputs, such as labor, materials, and energy) and those that are chosen before
the period they are consumed (fixed inputs, such as capital and, by nature, age).

Thus, if we denote wjt as the vector of variable inputs and sjt as the vector of state
variables, then we can rewrite (1) as

yjt = β0 + βwwjt + βssjt + ωjt + ηjt (2)
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where βw and βs are parameter vectors of the appropriate dimension. Labor is usually
the only component of wjt in the value-added case (that is, when yjt is gross-output
net of intermediate inputs; see, for example, Olley and Pakes [1996]). When the output
is measured as (gross) revenue, however, the vector of variable inputs is typically made
up of labor and some intermediate inputs (Levinsohn and Petrin 2003, for example,
consider materials, fuels, and electricity).

Second, the demand function for the proxy variable, djt(· ), is assumed to have a
single unobservable among its arguments (scalar unobservable assumption) and to be
strictly monotonic in the unobserved productivity (monotonicity assumption). Thus,
given that in equilibrium the demand function depends only on state variables, we can
write the proxy demand function as djt = dt(sjt, ωjt). Also, conditional on the observed
state variables, “profit maximizing behavior must lead more productive firms to use”
the proxy variable more (positive investment in Olley and Pakes 1996, intermediate
materials in Levinsohn and Petrin 2003, 322).

Interestingly, under the scalar unobservable and monotonicity assumptions, the de-
mand function for the proxy variable can be inverted to generate

ωjt = d−1
t (sjt, ωjt) = ht (sjt, djt) (3)

2.3 Estimation procedure

First stage

We plug the inverse of the demand function for the proxy variable (3) into the production
function (2) to obtain

yjt = β0 + βwwjt + βssjt + ht (sjt, djt) + ηjt

= βwwjt + φt (sjt, djt) + ηjt (4)

where φt (· ) is an unknown function that combines β0, βssjt, and ht (sjt, djt). Notice
that we now “observe the unobserved ωjt” (Ackerberg et al. 2007, 4215). Thus, there is
no endogeneity problem. Also, estimation using semiparametric methods avoids speci-
fying the demand function for the proxy variable (which can be rather involved because
djt(· ) ultimately depends on all the primitives of a dynamic model of firm behavior).
Olley and Pakes (1996), for example, use low-order polynomials to approximate φt (· ),
whereas Levinsohn and Petrin (2003) use a locally weighted quadratic least-squares ap-
proximation.

The downside is that not all the parameters of (2) are identified. To be precise, the
function φt (· ) is identified regardless of the proxy and output variables we use, but
the identification of the variable input coefficients depends on the proxy and output
variables we use. In the value-added case and regardless of the proxy variable used
(investment or materials), only the labor coefficient is identified (Olley and Pakes 1996;
Petrin, Poi, and Levinsohn 2004). In the revenue case, only the labor coefficient is iden-
tified when materials are used (in general, an intermediate input) as a proxy variable
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(Levinsohn and Petrin 2003), whereas all the variable input coefficients are identified
when investment is used as a proxy variable (Yasar, Raciborski, and Poi 2008).7 Thus,
if required, the state variable coefficients, βs, firm’s productivity, ωjt, and the noniden-
tified variable input coefficients—which we denote βwNI , so that, in obvious notation
to distinguish identified and nonidentified coefficients, βw = [βwI ,βwNI ]—must be esti-
mated in a second stage.

Second stage

Given the exogenous first-order Markov process assumption and that φt (sjt, djt) =
β0 +βssjt +ωjt (a result derived from the first stage), decomposing firms’ productivity
into its conditional expectation at time t − 1 and a deviation from that expectation
produce

ωjt = E (ωjt | ωj,t−1) + ξjt = g (ωj,t−1) + ξjt = g (φt−1 − β0 − βssj,t−1) + ξjt (5)

We then plug (5) into (2) to obtain

yjt = β0 + βwwjt + βssjt + g (φt−1 − β0 − βssj,t−1) + ξjt + ηjt (6)

Notice that ξjt is orthogonal to the state variables but not to the variable inputs
(the firm observes its productivity at the time the variable input is chosen). Thus (6)
identifies the state variable coefficients and the firm’s productivity when investment is
used as a proxy. However, we must account for the correlation between the ξjt and the
variable inputs when intermediate inputs are used as proxy variables.

In any case, the estimation procedure is analogous (and does not identify β0, so
we use below a new function g̃ to account for this). The key is to replace φt−1 by

its first-stage estimate, φ̂t−1, and use the first-stage estimates of the variable input

coefficients identified in the first stage, β̂wI , to construct a new dependent variable

y∗jt = yjt − β̂wIwI
jt. The resulting model,

y∗jt = βwNIwNI
jt + βssjt + g̃

(
φ̂t−1 − βssj,t−1

)
+ ξjt + ηjt

can then be estimated using, for example, a low-order polynomial approximation for
g̃ (· ). Notice that wNI (the vector of variable input coefficients that are not identi-
fied in the first stage) is typically empty in the value-added case and when investment
is used as a proxy. Thus a nonlinear least-squares estimator may suffice to achieve
consistency (Olley and Pakes 1996; Yasar, Raciborski, and Poi 2008).8 However, if in-
termediate inputs are used as a proxy in the revenue case, wNI typically contains the

7. Actually, identification of the variable input coefficients may require additional (and pos-
sibly strong and implausible) conditions—see, for example, Bond and Söderbom (2005) and
Ackerberg, Caves, and Frazer (2015).

8. Alternatively, one may use a (kernel) regression of y∗jt − βwNIwNI
jt − βssjt on ω̂j,t−1 = φ̂t−1 −

βssj,t−1 and a nonlinear search algorithm to find the value of βs (and βwNI ) that minimizes the
sum of the squared residuals from this regression (Olley and Pakes 1996, 1279).
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intermediate inputs that are used as proxy variables (djt). Also, a generalized method of
moments estimator must be used to control for the endogeneity of wNI. In particular,
Levinsohn and Petrin (2003) propose using moments based on the orthogonality be-
tween ξjt and the state variables and lags of the variable inputs to construct additional
overidentifying conditions,9

E

{
(ξjt + ηjt)

(
sjt

wNI
j,t−1

)}
= 0 (7)

where ξjt + ηjt = y∗jt − βwNIwNI
jt − βssjt − ̂E(ωjt | ωj,t−1) and ̂E(ωjt | ωj,t−1) is ob-

tained from the prediction of a (locally weighted) regression between ̂ωjt + ηjt = y∗jt −
βwNIwNI

jt − βssjt and ω̂j,t−1 = φ̂t−1 − βssj,t−1.
10

2.4 The Ackerberg, Caves, and Frazer (2015) method

The main argument in Ackerberg, Caves, and Frazer (2015) is that the labor coefficient
may not be identified in the estimation procedures proposed by Olley and Pakes (1996)
and Levinsohn and Petrin (2003). If labor is actually a state variable (because of the
existence of significant hiring and firing costs and long-term contracts, which occurs in
such European countries as Spain), then labor should be an argument of the demand
function of the proxy variable in (3) and the function φt (· ) in (4). Thus, if l denotes
the labor input, these functions should now be defined as ωjt = ht(sjt, djt, ljt) and
φt (sjt, djt, ljt), respectively. This prevents the labor coefficient from being identified
in the first stage (and, in general, any variable input whose current choices have an
impact on its future cost). However, Ackerberg, Caves, and Frazer (2015) show that
this parameter, along with all the other input coefficients, can be identified in the
second stage of the procedure. Next, we describe in detail the estimation procedure
they propose.

First stage

We plug the inverse of the demand function for the proxy variable into the production
function:

yjt = β0 + βwwjt + βssjt + ht(sjt, djt, ljt) + ηjt

Notice that in contrast to the first stage of Olley and Pakes (1996) and Petrin,
Poi, and Levinsohn (2004), none of the coefficients are identified. That is, w ≡ wNI.

However, “we still need the first stage to generate estimates of φ̂t−1”, which helps us to
approximate the unobserved productivity (Ackerberg et al. 2007, 4223). In particular,

9. One may of course exploit additional overidentifying moment conditions based on the lags of sjt
and wj,t−1.

10. In the value-added case with capital as the only state variable and materials as the proxy variable,
Petrin, Poi, and Levinsohn (2004) use a golden section line-search algorithm to find the value of
the capital coefficient that minimizes the sum of the squared residuals,

∑
j

∑
t
(ξjt + ηjt)

2.
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Ackerberg, Caves, and Frazer (2015) use the first stage of the procedure to obtain an
estimate of the composite term,

Φt(wjt, sjt, djt) = β0 + βwwjt + βssjt + ht(sjt, djt, ljt)

Second stage

With this estimate, Φ̂t(wjt, sjt, djt), we can now estimate all the parameters of interest
using the following equation:

yjt = β0 + βwwjt + βssjt + g̃
(
Φ̂t−1 − β0 − βwwj,t−1 − βssj,t−1

)
+ ξjt + ηjt

Note that in the value-added case, wjt includes only labor (ljt), whereas the revenue
case typically also contains a vector of m intermediate inputs. An interesting case is the
revenue case when an intermediate input is used as proxy: then wjt includes labor, the
proxy variable (djt contains an intermediate input), and a vector of the m−1 remaining
intermediate inputs.

In any case, the presence of ljt in w means that ξjt and w are no longer orthogonal.
Thus, compared with the Olley and Pakes (1996) and Petrin, Poi, and Levinsohn (2004)
moment condition in (7), an additional moment condition is now needed to identify the
labor coefficient. Lagged variable inputs are natural candidates for this, so the proposed
generalized method of moments estimator uses the sample analog of

E

{
(ξjt + ηjt)

(
sjt

wj,t−1

)}
= 0

Needless to say, additional (overidentifying) conditions can be obtained by consid-
ering, for example, powers and lags of sjt and wj,t−1. Yet, users should be aware of the
identification problems that may arise in this approach when estimating revenue func-
tions that include intermediate inputs in wjt. In fact, as shown by Bond and Söderbom
(2005) (for the Cobb–Douglas case) and Gandhi, Navarro, and Rivers (2013) (for the
general case), under the scalar unobservable assumptions of Olley and Pakes (1996),
Levinsohn and Petrin (2003), and Ackerberg, Caves, and Frazer (2015), there is no
guarantee that these gross-output production functions are identified. This is why
Ackerberg, Caves, and Frazer (2015) recommend that their method be used only with
value-added production functions in which the intermediate input mjt does not enter
the production function. Notice, however, that this amounts to assuming that either
the gross-output production function is Leontief in the intermediate input (that is,
the intermediate input is proportional to the output) or that there exists a “meaningful
value-added production function” (see, for example, Basu and Fernald 1997 for details).
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3 The acfest command

3.1 Syntax

acfest depvar
[
if
] [

in
]
, free(varlist) state(varlist) proxy(varname)[

i(varname) t(varname) intmat(varlist) invest nbs(#) robust nodum

second va overid
]

where depvar is the dependent variable (revenue is the default; value added is used when
the va option is specified). depvar, free(), state(), proxy(), i(), t(), and intmat()

may contain time-series operators. free() contains the list of labor inputs (for example,
white-collar and blue-collar workers); state() contains the list of state variables (for
example, capital and age); and proxy() is the proxy variable (typically, investment
or intermediate materials). free(), state(), and proxy() are required. Also, by
typing the appropriate term, the user can specify the use of investment as a proxy,
invest (materials is the default). Similarly, in the revenue case, the user must specify
intmat(), the list of intermediate inputs when investment is used as a proxy, whereas
when the demand of an intermediate input is used as a proxy, the user can optionally
include intermediate materials other than the one used as a proxy in intmat() (for
example, fuels and electricity). Lastly, notice that all of these variables should be in
logs and that data in memory must have been declared as panel; otherwise, the user
must identify both the panel variable, i(varname), and the time variable, t(varname).

To illustrate the full capabilities of acfest, let’s consider a user handling a dataset
containing firm-level information on revenue (y); value added (va); investment(inv);
blue- and white-collar labor (lb and lw, respectively); information and communication
technologies (ICT) and non-ICT capital (kICT and k, respectively); age (a); and three
intermediate inputs (materials, electricity, and fuel, which we denote m, e, and f, respec-
tively). Table 1 summarizes the basic syntax of acfest for the revenue and value-added
cases, using both investment and intermediate inputs as proxies.

Table 1. Basic syntax of the acfest command

state() free() proxy() intmat() va invest

Value-added investment k, kICT, a lw, lb inv yes yes
Value-added materials k, kICT, a lw, lb m yes
Revenue investment k, kICT, a lw, lb inv m, e, f yes
Revenue materials k, kICT, a lw, lb m e, f

The options also allow the user to determine the number of replications used in
bootstrapping (the default is nbs(100)); to obtain standard errors robust to arbitrary
heteroskedasticity (robust, with independent and identically distributed errors assumed
by default); not to include time dummies in the (first-stage) estimation of φ, nodum (time
dummies are included by default); to use a second-order polynomial to construct the
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control function, second (a third-order polynomial is the default); and to consider the
following additional instruments: 1) overid uses the lag of the state variables and the
second lag of the labor variables in the value-added case (the default is to use the state
and lagged labor inputs); and 2) it uses the lag of the state variables and the second
lag of the full set of variable inputs in the revenue case (the default is to use the state
and the full set of lagged variable inputs).

3.2 Syntax for predict after acfest

predict newvar
[
if
] [

in
]
, omega

where newvar is the name of the variable that will contain the estimated (log) produc-
tivity, ω̂jt. omega specifies the estimated productivity and is required. In particular,

the new variable is generated as yjt − β̂wwjt − β̂ssjt using the estimated coefficients
obtained from acfest.

3.3 Stored results

acfest stores the following results in e():

Scalars

e(N) number of observations e(waldcrs) Wald test statistic of constant
e(L) number of instruments returns to scale
e(K) number of exogenous variables e(j) Sargan–Hansen test statistic

Macros

e(depvar) name of the dependent variable e(predict) program used to implement
e(vcetype) robust predict

Matrices

e(b) coefficient vector e(V) variance–covariance matrix of
the estimators

Functions

e(sample) marks estimation sample

4 Examples

We use data on Spanish manufacturing firms drawn from the Encuesta sobre Estrate-
gias Empresariales to illustrate the acfest command. The Encuesta sobre Estrategias
Empresariales is an annual survey sponsored by the Spanish Ministry of Industry and
has been carried out since 1990. It is representative of Spanish manufacturing firms
classified by industrial sectors and size categories.11 In particular, we use the dataset
constructed by Manjón et al. (2013) to analyze the relation between exports and pro-

11. More information about this survey can be found at http://www.funep.es/esee/en/einfo que es.asp.
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ductivity. More specifically, we selected the 457 firms that provided data for all the
variables of interest (revenue, value added, labor, capital, age, intermediate materials,
and exports) for the period 1993 to 2005.

We start with the most basic syntax using capital (k) and age (a) as state variables,
intermediate materials (m) as a proxy, and labor (l) as the free input. Among the
available options, we identify the panel (firm) and time (year) variables, and specify
the number of bootstrap replications (200). We report results for both revenue (y) and
value added (va) as dependent variables. We also report OLS estimates for comparative
purposes.

The coefficient estimates we obtain are largely consistent with those reported in
the literature (see, for example, Van Beveren [2012]). In particular, when one controls
for the endogeneity of the variable inputs, changes in the value of the coefficients all
go in the right direction. This means that compared with the OLS estimates of the
revenue function, the values for the labor and materials coefficients are lower, and the
values for the capital coefficient (only in the revenue specification) are higher. Also note
that whereas we reject the null hypothesis of constant returns to scale in the revenue
specification, we do not reject it in the value-added specification. Lastly, because in both
cases the model is exactly identified, we cannot test for overidentifying restrictions. The
Sargan–Hansen test reflects this by providing the test statistic but not the p-value.

. acfest y, state(k a) proxy(m) free(l) i(firm) t(year) nbs(200)

..........................................................................
> ........................................................................
> ......................................................
Ackerberg-Caves-Frazer Method to Estimate Production Functions
(Non-linear homoskedastic GMM estimates for revenue)

Number of obs = 5484

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

k .1161491 .0192382 6.04 0.000 .078443 .1538553
a .0403692 .0166019 2.43 0.015 .0078301 .0729082
m .61435 .0664836 9.24 0.000 .4840446 .7446554
l .2554177 .062227 4.10 0.000 .1698339 .4137594

Wald test of constant returns to scale: Chi2 = 27.88 (p = 0.0000)

Sargan-Hansen J-statistic: 2.502 (p = .)
Exactly identifided model (no overidentifying restrictions)
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. regress y k a m l if e(sample)

Source SS df MS Number of obs = 5,484
F(4, 5479) = 75350.49

Model 19076.8401 4 4769.21002 Prob > F = 0.0000
Residual 346.786111 5,479 .063293687 R-squared = 0.9821

Adj R-squared = 0.9821
Total 19423.6262 5,483 3.542518 Root MSE = .25158

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

k .1092515 .0041902 26.07 0.000 .101037 .117466
a .0681793 .0055994 12.18 0.000 .0572022 .0791564
m .6368476 .0044021 144.67 0.000 .6282178 .6454774
l .2624117 .0061232 42.86 0.000 .2504077 .2744157

_cons 2.974325 .0400657 74.24 0.000 2.89578 3.05287

. acfest va, state(k a) proxy(m) free(l) i(firm) t(year) nbs(200) va

..........................................................................
> ........................................................................
> ......................................................
Ackerberg-Caves-Frazer Method to Estimate Production Functions
(Non-linear homoskedastic GMM estimates for value added)

Number of obs = 5484

va Coef. Std. Err. z P>|z| [95% Conf. Interval]

k .2255843 .1113753 2.03 0.043 .0072928 .4438759
a .0452443 2.896705 0.02 0.988 -5.632194 5.722682
l .6891031 .2565605 2.69 0.007 .1862537 1.191952

Wald test of constant returns to scale: Chi2 = 0.00 (p = 0.9890)

Sargan-Hansen J-statistic: 0.038 (p = .)
Exactly identifided model (no overidentifying restrictions)

. regress va k a l if e(sample)

Source SS df MS Number of obs = 5,484
F(3, 5480) = 22610.21

Model 16856.7069 3 5618.90231 Prob > F = 0.0000
Residual 1361.84416 5,480 .248511708 R-squared = 0.9252

Adj R-squared = 0.9252
Total 18218.5511 5,483 3.3227341 Root MSE = .49851

va Coef. Std. Err. t P>|t| [95% Conf. Interval]

k .304464 .0073308 41.53 0.000 .2900927 .3188354
a .0901184 .0110719 8.14 0.000 .0684131 .1118238
l .7699258 .0108193 71.16 0.000 .7487158 .7911359

_cons 6.389548 .0614492 103.98 0.000 6.269083 6.510013

Next, we consider using investment (i) as a proxy in the revenue specification and
specify the robust option to obtain robust standard errors. Then, we show the effects
of using the second option: that is, we use a second-order polynomial to construct
the control function (rather than the third-order polynomial used by default). The first
thing to notice is that using investment rather than materials has a larger impact on the
variable inputs’ coefficients (materials and labor) than on the state coefficients (capital
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and age). Second, using a second- rather than a third-order polynomial has a similar
impact on the coefficients, which means that they are now closer to those obtained
using intermediate materials as a proxy. Also note that we reject the null hypothesis
of constant returns to scale (both for the revenue and value-added specification), and
because the model is exactly identified, we cannot test for overidentifying restrictions.

. acfest y, state(k a) proxy(i) free(l) i(firm) intmat(m) t(year) nbs(200)
> invest robust
..........................................................................
> ........................................................................
> ......................................................
Ackerberg-Caves-Frazer Method to Estimate Production Functions
(Non-linear heteroskedastic GMM estimates for revenue)

Number of obs = 5484

robust
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

k .1069995 .0138518 7.72 0.000 .0798505 .1341485
a .1010313 .0139767 7.23 0.000 .0736375 .1284251
m .7372477 .0199144 37.02 0.000 .6982162 .7762792
l .1452563 .0163867 8.86 0.000 .1131391 .1773736

Wald test of constant returns to scale: Chi2 = 72.36 (p = 0.0000)

Sargan-Hansen J-statistic: 0.000 (p = .)
Exactly identifided model (no overidentifying restrictions)

. acfest y, state(k a) proxy(i) free(l) i(firm) intmat(m) t(year) nbs(200)
> invest robust second
..........................................................................
> ........................................................................
> ......................................................
Ackerberg-Caves-Frazer Method to Estimate Production Functions
(Non-linear heteroskedastic GMM estimates for value added)

Number of obs = 5027

robust
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

k .0958997 .0191596 5.01 0.000 .0583476 .1334518
a .0826269 .0198569 4.16 0.000 .0437082 .1215457
m .7756028 .0508862 15.24 0.000 .6758677 .8753379
l .1223262 .0608105 2.01 0.044 .0031399 .2415126

Wald test of constant returns to scale: Chi2 = 29.14 (p = 0.0000)

Sargan-Hansen J-statistic: 0.000 (p = .)
H0: overidentifying restrictions are valid

Our final set of results is meant to illustrate the Sargan–Hansen test and the predict
postestimation command in a specification that is analogous to the one presented above
but uses value added as the dependent variable (with investment as a proxy and standard
errors robust to arbitrary heteroskedasticity). To this end, we use the overid option
and save the estimated (log) productivity in a new variable called omega hat.
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. acfest va, state(k a) proxy(i) free(l) i(firm) t(year) nbs(200) va overid
> invest robust
..........................................................................
> ........................................................................
> ......................................................
Ackerberg-Caves-Frazer Method to Estimate Production Functions
(Non-linear heteroskedastic GMM estimates for value added)

Number of obs = 5027

robust
va Coef. Std. Err. z P>|z| [95% Conf. Interval]

k .1725643 .0201417 8.57 0.000 .1330873 .2120412
a .2679969 .9289787 0.29 0.773 -1.552768 2.088762
l .4300994 .0966996 4.45 0.000 .2405717 .6196271

Wald test of constant returns to scale: Chi2 = 0.02 (p = 0.8848)

Sargan-Hansen J-statistic: 1.454 (p = 0.6928)
H0: overidentifying restrictions are valid

The Sargan–Hansen test does not reject the validity of the moment conditions used
to construct the model. Also, the Wald test supports the existence of constant returns
to scale. Lastly, as observed in the revenue case, using investment rather than materials
as a proxy has a major impact on the coefficients.

. predict omega_hat, omega

. histogram omega_hat, by(e)
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Figure 1. Exports and productivity

Figure 1, the histogram for estimated productivity, distinguishes between exporters
(that is, firms that declare positive values in the exporting variable, e, for a particular
year) and nonexporters (that is, firms that declare zero value in the exporting variable
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for a particular year). It turns out that the distribution of the exporters is slightly to the
right of the nonexporters, which indicates that, consistent with previous findings on the
exporting-productivity relation, exporting firms are more productive than nonexporting
firms. Still, one should bear in mind that although this finding suggests a positive
correlation between exports and productivity, it is based on a simple descriptive analysis
and should not be interpreted as evidence of causality between these variables.

5 Concluding remarks

In this article, we introduced the acfest command, which implements a method for
estimating production functions proposed by Ackerberg, Caves, and Frazer (2015). This
method deals with the functional dependence problems that may arise in the approaches
proposed by Olley and Pakes (1996) (implemented in Stata by Yasar, Raciborski, and
Poi [2008]) and, particularly, by Levinsohn and Petrin (2003) (implemented in Stata by
Petrin, Poi, and Levinsohn [2004]). The output from acfest also includes a Wald test
(constant returns to scale) and the Sargan–Hansen J test (overidentifying conditions).
Lastly, the predict postestimation command provides an estimate of the (log of) the
productivity.

We illustrated the capabilities of the new command using data on Spanish manu-
facturing firms. In particular, we reported results for both revenue and value added.
Estimates were as expected, meaning that, when we compared them with OLS estimates,
we obtained a smaller elasticity of labor and materials and a larger elasticity of capital
(see, for example, Griliches and Mairesse [1998]). We also showed that using investment
as a proxy and a second- or third-order polynomial to construct the control function
makes a notable difference in the estimated coefficients of materials and labor. Further,
Wald tests reject the null hypothesis of constant returns to scale in the revenue specifica-
tions but not in the value-added specifications. Lastly, the Sargan–Hansen test indicates
the convenience of using overidentifying conditions in the value-added specification.
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